关键部位脑梗死与认知功能障碍的相关性分析

苏小吏, 杨银雪, 岳卫东

PDF(389 KB)
  • ISSN 2096-5516 CN 10-1536/R
  • 主办单位:阿尔茨海默病防治协会
快速检索
阿尔茨海默病及相关病杂志 ›› 2020, Vol. 3 ›› Issue (3) : 191-194. DOI: 10.3969/j.issn.2096-5516.2020.03.005
临床研究

关键部位脑梗死与认知功能障碍的相关性分析

作者信息 +

Correlation analysis of cerebral infarction and cognitive dysfunction in strategic areas

Author information +
History +

摘要

目的: 探索神经功能缺损程度与认知功能障碍的相关性,分析导致认知功能障碍的关键梗死部位及其认知功能障碍的特点。方法: 选择首发单个部位脑梗死患者151例,应用神经功能缺损评分( NIHSS)评估神经缺损程度,蒙特利尔认知评价量表(MoCA)评估认知功能,根据MoCA评分将患者分为认知功能障碍组104例,非认知功能障碍组47例。根据影像学检查结果按病灶部位将认知功能障碍患者分为基底节组30例、丘脑组11例、额叶组13例、颞叶组10例、枕叶组9例、顶叶组10例、脑干组10例、小脑组11例。结果: 认知功能障碍组与非认知功能障碍组年龄、性别、受教育年限、NIHSS评分无显著差异(P> 0.05)。认知功能障碍组中,丘脑组、额叶组、颞叶组、枕叶组视空间和执行功能评分较低(P< 0.05)。颞叶组命名功能评分较低(P< 0.05)。丘脑组和额叶组注意功能评分较低(P< 0.05)。丘脑组语言功能评分较低(P< 0.05)。丘脑组、额叶组、颞叶组在延迟回忆功能评分较低(P< 0.05)。丘脑组、额叶组、颞叶组定向功能评分较低(P< 0.05)。基底节、顶叶、脑干、小脑认知功能评分无统计学意义(P> 0.05)。结论: 卒中患者神经功能缺损的严重程度与认知障碍与否无显著相关性。导致认知功能障碍的关键梗死部位分别为:丘脑、额叶、颞叶、枕叶。丘脑梗死患者认知功能损害域为视空间和执行功能、注意力、语言、延迟回忆、定向功能。额叶梗死患者认知功能损害域为视空间及执行功能、注意力、延迟回忆、定向力功能。颞叶梗死患者认知功能损害域为视空间及执行功能、命名、延迟回忆、定向功能。枕叶认知功能损害域为视空间执行功能。

Abstract

Objective: To explore the correlation between the degree of neurological deficits and cognitive impairment and to analyze the strategic infarct location and the characteristics of cognitive impairment. Methods: A total of 151 patients with single-site cerebral infarction were selected, and the degree of neurological deficit was assessed by the National Institutes of Health Stroke Scale (NIHSS). The Montreal Cognitive Assessment (MoCA) was used to assess cognitive function. According to the MoCA score, the patients were divided into 104 cognitive impairment groups and 47 non-cognitive impairment groups. According to the results of imaging examination, 30 patients with cognitive dysfunction were divided into basal ganglia group, 11 in thalamus group, 13 in frontal lobe group, 10 in temporal lobe group, 9 in occipital lobe group, 10 in parietal lobe group, 10 in brainstem group and 11 in cerebellum group. Results: There was no significant difference in the age, gender, years of education and NIHSS score between the cognitive impairment group and the non-cognitive impairment group at admission (P> 0.05). The visual space and executive function scores of thalamus, frontal, temporal, and occipital lobe groups were lower (P< 0.05). The temporal lobe group had a lower naming function score (P< 0.05). The scores of attention function in thalamus and frontal lobe group were lower (P< 0.05). The score of language function in thalamus group was low (P< 0.05). Delayed recall function scores were lower in thalamus, frontal, and temporal lobe groups (P< 0.05). The scores of directional function in thalamus, frontal and temporal lobe were lower (P< 0.05). The cognitive function scores in basal ganglia, parietal lobe, brainstem, and cerebellum were not statistically significant (P> 0.05). After 3 months, there were no significant differences between the treatment group and the control group in terms of naming, delayed recall, and orientation (P> 0.05). The treatment group had higher scores in visual space performance, attention, language, and abstract function (P< 0.05). Conclusion: There is no significant correlation between the severity of neurological deficits and cognitive impairment in patients with stroke. The strategic infarct location leading to cognitive dysfunction are: thalamus, frontal lobe, temporal lobe, occipital lobe. Cognitive impairment domains in patients with thalamic infarction are visual space and executive function, attention, language, delayed recall, and orientation function. The domain of cognitive impairment in frontal lobe infarction is visual space and executive function, attention, delayed recall, and orientation function. The domain of cognitive impairment in patients with temporal lobe infarction is visual space and executive function, naming, delayed recall, orientation function. Occipital cognitive impairment domain for visual space executive function.

关键词

关键部位 / 脑梗死 / 认知功能障碍

Key words

Strategic location / Infarction / Cognitive dysfunction

引用本文

导出引用
苏小吏 , 杨银雪 , 岳卫东. 关键部位脑梗死与认知功能障碍的相关性分析. 阿尔茨海默病及相关病杂志. 2020, 3(3): 191-194 https://doi.org/10.3969/j.issn.2096-5516.2020.03.005
SU Xiaoli , YANG Yinxue , YUE Weidong. Correlation analysis of cerebral infarction and cognitive dysfunction in strategic areas. Chinese Journal of Alzheimer's Disease and Related Disorders. 2020, 3(3): 191-194 https://doi.org/10.3969/j.issn.2096-5516.2020.03.005
美国心脏协会将血管性认知功能障碍(vascular cognitive impairment, VCI)定义为由于脑血管疾病及其相关危险因素导致的认知障碍,VCI的临床过程是可变的,是认知障碍的潜在可治疗和可预防的原因[1]。而病变部位是卒中后认知障碍的重要决定因素,这些导致卒中后认知障碍的重要病变部位称为关键部位[2]。本研究应蒙特利尔认知评价量表(Montreal Cognitive Assessment, MoCA)和神经功能缺损评分(National Institutes of Health Stroke Scale, NIHSS)评估神经缺损程度,对不同部位脑梗死患者的认知功能和神经缺损程度进行评定,探索神经功能缺损程度与认知功能障碍的相关性,筛选出导致认知功能障碍的关键梗死部位并探究其认知功能障碍的数据,从而为临床诊疗提供指导。

1 资料与方法

1.1 研究对象

收集哈尔滨医科大学附属第二医院神经科门诊和住院患者中首发单个部位脑梗死且近期未使用影响认知功能药物的患者151例。其中男性83例,女性68例。年龄为50~75岁,受教育年限为6~12年,NIHSS评分:0~10分。根据神经心理学评估,将患者分为两组,即认知功能障碍组104例和非认知功能障碍组47例。根据影像学CT和/或MRI检查结果按病灶部位将患者分为基底节组30例、丘脑组11例、额叶组13例、颞叶组10例、枕叶组9例、顶叶组10例、脑干组10例、小脑组11例。

1.1.1 纳入排除标准

符合急性缺血性脑卒中诊断标准;首发单个部位脑梗死且近期未使用影响认知功能药物的患者;可配合查体及体格及神经心理学检查;有生活自理能力;取得患者本人或监护人同意。通过相应检查化验等排除以下患者:①存在明显语言功能及听觉功能损害而无法完成认知测试的患者;②患有严重抑郁、焦虑等精神疾病病史;③明确由其他原因引起的认知功能障碍如阿尔茨海默病、额颞叶痴呆、帕金森病、亨廷顿病;④存在严重内科系统疾病;⑤长期酗酒、滥用精神类药物、吸毒等不良生活习惯者。

1.2 研究方法

1.2.1 神经功能缺损评分

采用NIHSS评分用于评估卒中患者神经功能缺损程度,根据患者的体格检查情况进行评估。评分范围0~42分。得分越高,神经功能损伤越严重。

1.2.2 认知功能检查

采用MoCA评分评价视觉空间和执行功能,命名能力,注意力,语言能力,抽象思维能力,延迟回忆能力和定向能力等不同认知领域。受教育年限≤12年则加1分,≥26分属于正常。最高30分,正常值≥26分,26分以下即认为有认知障碍。

1.2.3 实验方法

对每位入组患者进行基本信息采集及记录,主要包括患者年龄、性别、受教育程度等,所有入组患者在首次且急性起病后进行常规头部CT和MRI检查。所有影像学资料均由放射科医师审定。发病1周内,在患者精神状态良好、病情稳定并愿意积极配合后对每一位患者进行标准化MoCA量表评估及NIHSS评分。测试需要在安静的环境下,由受过专业培训的测试人员,在规定的时间内,一次完成测试评估。

1.3 统计学方法

本实验所有统计学分析均采用SAS9软件进行统计学分析,定量资料的统计描述根据其正态性检验结果选用均值±标准差或中位数(四分位数)表示。通过t检验或Wilcoxon秩和检验进行两组之间的差异分析,多组间的差异性分析采用方差分析或Kruskal-Wallis H检验,两两比较采用SNK法;定性资料的统计描述采用频数(百分比)表示,两组间的差异性分析采用χ2检验。

2 结果

2.1 认知障碍和非认知障碍组一般情况

认知障碍组和非认知障碍组在入院时的年龄,性别,受教育年限之间进行比较。结果显示差异均无统计学意义(P> 0.05),见表1。入院时两组NIHSS评分差异无统计学意义(P> 0.05),见表1
表1 认知障碍与非认知障碍组患者基线资料比较
变量 认知障碍组(n=104) 非认知障碍组(n=47) Z/χ2 P
年龄 60.0(55.0~65.0) 60.0(56.0~65.0) 0.505 3 0.6133
性别 男 61(73.49) 22(26.51) 1.834 9 0.1755
43(63.24) 25(36.76)
受教育年限 9.0(7.5~12.0) 9.0(6.0~12.0) -0.624 4 0.5323
NIHSS 2.0(1.0~4.0) 2.0(1.0~4.0) 0.287 2 0.7740

2.2 认知功能障碍组中不同部位梗死患者认知功能评分

在认知功能障碍组中,筛选出与不同认知域损伤相关的关键梗死部位分别为丘脑、额叶、颞叶、枕叶。丘脑组、额叶组、颞叶组、枕叶组视空间和执行功能评分较低,差异具有统计学意义(P< 0.05)。与其他组相比,颞叶组命名功能的评分较低,差异具有统计学意义(P< 0.05)。丘脑组和额叶组注意功能评分较低,差异具有统计学意义(P< 0.05)。丘脑组和其余组相比,语言功能评分较低,差异具有统计学意义(P< 0.05)。丘脑组、额叶组、颞叶组在延迟回忆功能评分较低,差异具有统计学意义(P< 0.05)。丘脑组、额叶组、颞叶组在定向功能评分较低,差异具有统计学意义(P< 0.05)。基底节、顶叶、脑干、小脑认知功能评分差异无统计学意义(P> 0.05),见 表2
表2 梗死部位与认知功能
基底节组
n=30)
丘脑组
n=11)
额叶组
n=13)
颞叶组
n=10)
枕叶组
n=9)
顶叶组
n=10)
脑干组
n=10)
小脑组
n=11)
视空间和执行功能 4(3,5) 2(1,3) 2(2,2) 1(1,2) 1(1,2) 4.5(4,5) 5(4,5) 5(4,5)
命名 3(2,3) 3(3,3) 2(2,3) 0.5(0,1) 3(2,3) 2(2,3) 3(2,3) 3(2,3)
注意 5(4,5) 1(1,2) 1(1,2) 5(4,6) 4(5,6) 4.5(3,5) 4(3,5) 4(3,5)
语言 3(2,3) 1(0,1) 2(2,3) 2.5(2,3) 3(2,3) 2.5(2,3) 3(2,3) 3(2,3)
抽象 1(1,2) 2(1,2) 1(1,1) 1(1,2) 0(0,1) 1(0,1) 0.5(0,1) 1(0,2)
延迟回忆 3(1,5) 0(0,1) 0(0,1) 0.5(0,1) 5(1,5) 5(1,5) 4.5(2,5) 2(2,5)
定向 5(4,6) 1(1,2) 1(1,4) 1(1,2) 6(5,6) 5(4,6) 5(4,6) 5(3,6)
总分 24.5(23,25) 12(11,14) 13(11,15) 13(12,14) 22(19,24) 23(22,25) 24.5(22,25) 24(21,25)

3 讨论

认知功能下降严重影响人们的生活水平,而VCI是认知障碍的潜在可治疗和可预防的原因,因而关键部位脑梗死所导致的认知功能下降受到了人们的广泛关注。患有血管性痴呆的患者经常表现出记忆丧失、注意力和执行功能障碍,例如思维迟钝,迷失方向,计划,推理和判断能力下降以及解决问题的能力降低[3]。因而早期发现患者的认知能力下降并进行临床干预有助于改善患者的认知功能。
研究表明,内囊前肢携带来自额叶前皮质区域的丘脑和脑干纤维,这些纤维与情感、动机、认知处理和决策等方面相关[4]。Kooistra等[5]发现左内囊后肢的脑血管病变患者可出现持续而严重的言语记忆障碍。Leszczynski等[6]认为丘脑前部是连接和调节与记忆相关的海马和与注意力相关的额-顶叶网络之间的枢纽,在学习和情节记忆,执行功能,分配注意力方面具有重要意义。Richfield等[7]阐述了双侧尾状核头部破坏性病变相关的持续行为障碍,并认为这可能与尾状核-前额皮质的连接相关。Huang等[8]在一项关胼胝体梗死患者认知功能的研究发现,胼胝体梗塞可引起认知功能障碍。患者的执行功能,定向能力,注意力,计算力,延迟回忆,语言和重复能力显著降低,可出现急性期记忆障碍,伴有不同程度的视觉空间能力下降。Unterrainer等[9]研究表明前额叶皮层接收来自其他新皮质区域的输入信号,特别是来自顶叶和颞下区域。前额皮质还接收来自海马,扣带皮层,黑质和丘脑的信息,并向背内侧核以及杏仁核,中隔核,基底神经节和下丘脑发回信号。背外侧额叶皮层在规划解决方案中起着核心作用,但后部皮质区域(例如枕叶和顶叶皮层)在任务期间对视觉和空间处理方面做出了更为基本的贡献。Tagawa等[10]研究表明内侧颞叶萎缩患者与认知障碍有关,特别是定向,即时和延迟回忆以及单词流畅性相关。Vuilleumier等[11]研究表明顶叶皮层由许多不同的子区域构成,这些子区域具有不同的功能与注意力和空间表现相关。上述研究成果均提示不同部位脑梗死患者其认知功能损伤不同。
本研究结果显示认知障碍组与非认知障碍组NIHSS评分无显著差异,这表明卒中患者神经功能缺损的严重程度与认知障碍与否无显著相关性。通过对比认知功能障碍患者不同梗死部位与认知域损伤情况表明,卒中患者认知域的损害与梗死部位存在相关性。因此,临床上可通过患者梗死部位及相应的认知域损伤情况快速判断患者有无认知功能下降。需指出,本研究存在不足,入组患者没有包括患有语言障碍的卒中患者,因为我们无法充分测试它们,且某些群体中的受试者数量较少,不能排除虚假发现的可能性及潜在混杂因素的可能影响。
综上,脑梗死对认知功能的影响取决于梗死位置,这意味着,要更精准地确定个体患者病变的程度导致的认知症状,应着重考虑其病变位置。分析并确定关键病灶部位与症状的关系可能为临床应用提供重要方法。因此,基于关键病灶部位细化定位的方法研究对患者预后和治疗的应用需要在纵向研究中进一步讨论。未来的研究应基于关键部位梗死的定位和卒中后认知障碍,建立更全面的多中心研究模型。

参考文献

[1]
Gorelick, PB, Scuteri, A, Black, SE, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association[J]. Stroke, 2011, 42(9): 2672-2713.
This scientific statement provides an overview of the evidence on vascular contributions to cognitive impairment and dementia. Vascular contributions to cognitive impairment and dementia of later life are common. Definitions of vascular cognitive impairment (VCI), neuropathology, basic science and pathophysiological aspects, role of neuroimaging and vascular and other associated risk factors, and potential opportunities for prevention and treatment are reviewed. This statement serves as an overall guide for practitioners to gain a better understanding of VCI and dementia, prevention, and treatment.Writing group members were nominated by the writing group co-chairs on the basis of their previous work in relevant topic areas and were approved by the American Heart Association Stroke Council Scientific Statement Oversight Committee, the Council on Epidemiology and Prevention, and the Manuscript Oversight Committee. The writing group used systematic literature reviews (primarily covering publications from 1990 to May 1, 2010), previously published guidelines, personal files, and expert opinion to summarize existing evidence, indicate gaps in current knowledge, and, when appropriate, formulate recommendations using standard American Heart Association criteria. All members of the writing group had the opportunity to comment on the recommendations and approved the final version of this document. After peer review by the American Heart Association, as well as review by the Stroke Council leadership, Council on Epidemiology and Prevention Council, and Scientific Statements Oversight Committee, the statement was approved by the American Heart Association Science Advisory and Coordinating Committee.The construct of VCI has been introduced to capture the entire spectrum of cognitive disorders associated with all forms of cerebral vascular brain injury-not solely stroke-ranging from mild cognitive impairment through fully developed dementia. Dysfunction of the neurovascular unit and mechanisms regulating cerebral blood flow are likely to be important components of the pathophysiological processes underlying VCI. Cerebral amyloid angiopathy is emerging as an important marker of risk for Alzheimer disease, microinfarction, microhemorrhage and macrohemorrhage of the brain, and VCI. The neuropathology of cognitive impairment in later life is often a mixture of Alzheimer disease and microvascular brain damage, which may overlap and synergize to heighten the risk of cognitive impairment. In this regard, magnetic resonance imaging and other neuroimaging techniques play an important role in the definition and detection of VCI and provide evidence that subcortical forms of VCI with white matter hyperintensities and small deep infarcts are common. In many cases, risk markers for VCI are the same as traditional risk factors for stroke. These risks may include but are not limited to atrial fibrillation, hypertension, diabetes mellitus, and hypercholesterolemia. Furthermore, these same vascular risk factors may be risk markers for Alzheimer disease. Carotid intimal-medial thickness and arterial stiffness are emerging as markers of arterial aging and may serve as risk markers for VCI. Currently, no specific treatments for VCI have been approved by the US Food and Drug Administration. However, detection and control of the traditional risk factors for stroke and cardiovascular disease may be effective in the prevention of VCI, even in older people.Vascular contributions to cognitive impairment and dementia are important. Understanding of VCI has evolved substantially in recent years, based on preclinical, neuropathologic, neuroimaging, physiological, and epidemiological studies. Transdisciplinary, translational, and transactional approaches are recommended to further our understanding of this entity and to better characterize its neuropsychological profile. There is a need for prospective, quantitative, clinical-pathological-neuroimaging studies to improve knowledge of the pathological basis of neuroimaging change and the complex interplay between vascular and Alzheimer disease pathologies in the evolution of clinical VCI and Alzheimer disease. Long-term vascular risk marker interventional studies beginning as early as midlife may be required to prevent or postpone the onset of VCI and Alzheimer disease. Studies of intensive reduction of vascular risk factors in high-risk groups are another important avenue of research.
[2]
Biesbroek, JM, Weaver, NA, Biessels, GJ, et al. Lesion location and cognitive impact of cerebral small vessel disease[J]. Clin Sci (Lond), 2017, 131(8): 715-728.
Cerebral small vessel disease (SVD) is an important cause of cognitive impairment. Important MRI manifestations of SVD include white matter hyperintensities (WMH) and lacunes. This narrative review addresses the role of anatomical lesion location in the impact of SVD on cognition, integrating findings from early autopsy studies with emerging findings from recent studies with advanced image analysis techniques. Early autopsy and imaging studies of small case series indicate that single lacunar infarcts in, for example the thalamus, caudate nucleus or internal capsule can cause marked cognitive impairment. However, the findings of such case studies may not be generalizable. Emerging location-based image analysis approaches are now being applied to large cohorts. Recent studies show that WMH burden in strategic white matter tracts, such as the forceps minor or anterior thalamic radiation (ATR), is more relevant in explaining variance in cognitive functioning than global WMH volume. These findings suggest that the future diagnostic work-up of memory clinic patients could potentially be improved by shifting from a global assessment of WMH and lacune burden towards a quantitative assessment of lesion volumes within strategic brain regions. In this review, a summary of currently known strategic regions for SVD-related cognitive impairment is provided, highlighting recent technical developments in SVD research. The potential and challenges of location-based approaches for diagnostic purposes in clinical practice are discussed, along with their potential prognostic and therapeutic applications.© 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
[3]
Sun MK, Potential therapeutics for vascular cognitive im- pairment and dementia[J]. Curr Neuropharmacol, 2018, 16(7): 1036-1044.
[4]
Safadi, Z, Grisot, G, Jbabdi, S, et al. Functional segmentation of the anterior limb of the internal capsule: linking white matter abnormalities to specific connections[J]. J Neurosci, 2018, 38(8): 2106-2117.
The anterior limb of the internal capsule (ALIC) carries thalamic and brainstem fibers from prefrontal cortical regions that are associated with different aspects of emotion, motivation, cognition processing, and decision-making. This large fiber bundle is abnormal in several psychiatric illnesses and a major target for deep brain stimulation. Yet, we have very little information about where specific prefrontal fibers travel within the bundle. Using a combination of tracing studies and diffusion MRI in male nonhuman primates, as well as diffusion MRI in male and female human subjects, we segmented the human ALIC into five regions based on the positions of axons from different cortical regions within the capsule. Fractional anisotropy (FA) abnormalities in patients with bipolar disorder were detected when FA was averaged in the ALIC segment that carries ventrolateral prefrontal cortical connections. Together, the results set the stage for linking abnormalities within the ALIC to specific connections and demonstrate the utility of applying connectivity profiles of large white matter bundles based on animal anatomic studies to human connections and associating disease abnormalities in those pathways with specific connections. The ability to functionally segment large white matter bundles into their components begins a new era of refining how we think about white matter organization and use that information in understanding abnormalities. The anterior limb of the internal capsule (ALIC) connects prefrontal cortex with the thalamus and brainstem and is abnormal in psychiatric illnesses. However, we know little about the location of specific prefrontal fibers within the bundle. Using a combination of animal tracing studies and diffusion MRI in animals and human subjects, we segmented the human ALIC into five regions based on the positions of axons from different cortical regions. We then demonstrated that differences in FA values between bipolar disorder patients and healthy control subjects were specific to a given segment. Together, the results set the stage for linking abnormalities within the ALIC to specific connections and for refining how we think about white matter organization in general.Copyright © 2018 the authors 0270-6474/18/382106-12$15.00/0.
[5]
Kooistra, CA, Heilman KM, Memory loss from a subcortical white matter infarct[J]. J Neurol Neurosurg Psychiatry, 1988, 51(6): 866-869.
[6]
Leszczynski, M, Staudigl T, Memory-guided attention in the anterior thalamus[J]. Neurosci Biobehav Rev, 2016, 66: 163-165.
[7]
Richfield, EK, Twyman, R, Berent, S, et al. Neurological syndrome following bilateral damage to the head of the caudate nuclei[J]. Ann Neurol, 1987, 22(6): 768-771.
We describe a persistent behavioral disorder associated with bilateral destruction of the head of the caudate nuclei. The findings in this case support a role for the caudate nuclei in behavioral functions and are interpreted in view of recent anatomical and physiological information on the connections of the caudate nuclei with the prefrontal cortex.
[8]
Huang, X, Du, X, Song, H, et al. Cognitive impairments associated with corpus callosum infarction: a ten cases study[J]. Int J Clin Exp Med, 2015, 8(11): 21991-21998.
[9]
Unterrainer, JM, Owen AM, Planning and problem solving: from neuropsychology to functional neuroimaging[J]. J Phy- siol Paris, 2006, 99(4-6): 308-317.
[10]
Tagawa, R, Hashimoto, H, Nakanishi, A, et al. The relationship between medial temporal lobe atrophy and cognitive impairment in patients with dementia with lewy bodies[J]. J Geriatr Psychiatry Neurol, 2015, 28(4): 249-254.
[11]
Vuilleumier P, Mapping the functional neuroanatomy of spatial neglect and human parietal lobe functions: progress and challenges[J]. Ann N Y Acad Sci, 2013, 1296: 50-74.
PDF(389 KB)

570

Accesses

0

Citation

Detail

段落导航
相关文章

/