To increase understanding of the pathological heterogeneity of Alzheimer's disease

PDF(800 KB)
  • ISSN 2096-5516 CN 10-1536/R
  • Sponsored: China Association for Alzheimer’s Disease
快速检索
Chinese Journal of Alzheimer's Disease and Related Disorders ›› 2021, Vol. 4 ›› Issue (3) : 175-178. DOI: 10.3969/j.issn.2096-5516.2021.03.001
Commentary

To increase understanding of the pathological heterogeneity of Alzheimer's disease

Author information +
History +

Abstract

Cite this article

Download Citations
. To increase understanding of the pathological heterogeneity of Alzheimer's disease. Chinese Journal of Alzheimer's Disease and Related Disorders. 2021, 4(3): 175-178 https://doi.org/10.3969/j.issn.2096-5516.2021.03.001
阿尔茨海默病(Alzheimer's disease, AD)是目前最为常见的神经系统变性痴呆,呈全球流行趋势,为老年人死亡的第四大病因。2019 年新英格兰杂志发布的AD及其他痴呆疾病负担研究报告显示[1],目前全球痴呆患者的数量已超过 4680 万,中国痴呆患者已达到 1042.7 万,接近全球痴呆人数的 1/4,其中60~70%为AD患者。AD起病隐匿,临床特征多样,初期诊断困难,确诊时多为中晚期,又因缺少有效的靶向药物,病变持续进展,最终导致患者工作及日常生活能力严重受损,直至丧失。AD所需的长期护理造成了沉重的家庭和社会负担,仅2015年全球用于AD患者的社会经济开支高达8180亿美元,超过全世界GDP总和的1%[2],该病已成为国民健康与社会发展的巨大危害与忧患。近15年来,国内外200余种治疗AD新药均以失败告终,究其根本原因在于AD病理的异质性,据不同尸检研究证实,临床诊断为AD的患者中,仅17%~26%为单纯AD,大部分为共病理型痴呆[3,4],AD神经病理的异质性决定了临床表型的多样性,给临床医生进行正确诊断带来诸多困惑。这种病理异质性,使得针对某一种靶点的临床药物屡屡失败[5]。因此,关注AD脑组织病理学表现与AD临床表征及影像学表现等关联研究仍是认识、研究乃至希冀攻克疾病的重要切入点。

1 阿尔茨海默病的病理学

神经病理学仍然是AD诊断的金标准。在大体病理学上,AD表现为弥漫性脑萎缩,典型AD以海马及颞叶内侧萎缩为主,后部变异型AD以楔前叶、后扣带回萎缩为主,而额叶变异型AD则以双侧额叶萎缩为主,Logopenic变异型AD则以左侧顶-颞叶萎缩为主,但这些宏观特征对AD诊断并没有特异性。从微观角度看,AD患者脑组织除细胞外淀粉样斑块沉积和细胞内神经元纤维缠结之外,还包括嗜酸性平野体、海马细胞颗粒空泡变性、活化的小胶质细胞、反应性星形胶质细胞、脑淀粉样血管病等病理改变。这些病变均可损伤突触功能和诱导神经元变性坏死,导致患者认知功能障碍。

2 AD经典的病理改变及发病学说

AD以特征性的老年斑和神经原纤维缠结为病理表现,而β淀粉样蛋白(amyloid β, Aβ)和高度磷酸化的tau蛋白(tau protein, tau)为AD发病学说中的关键物质,故Aβ和tau蛋白就成为AD最经典的病理标志。2018年美国国家衰老研究院-阿尔茨海默协会(National Institute on Aging-Alzheimer's Association, NIA-AA)提出采用生物学方法检出Aβ和tau蛋白的异常来定义阿尔茨海默病生物学研究框架[6]:仅Aβ和病理性tau标志物共存时可以确诊AD;若单纯具有Aβ沉积证据(PET-CT证实淀粉样蛋白异常沉积或脑脊液Aβ42或Aβ42/Aβ40比值异常)但未显示病理性tau蛋白异常增高者则称为“阿尔茨海默病理改变”。在该统一框架下有利于研究痴呆临床前的系列病理变化,也有利于AD的诊断及治疗时机关口提前。
AD经典的神经病理改变是基于Hardy和Higgins于1992年提出的Aβ蛋白级联瀑布假说,认为Aβ在大脑中的沉积是AD发病的启动步骤,随后导致tau沉积、神经元和突触丧失以及认知功能下降[7]。这一假说得到大量证据支持,如遗传AD(常染色体显性AD)、唐氏综合征或APP基因突变会导致Aβ42/ 40比率增加、总Aβ增加,或增加Aβ纤丝蛋白原性,从而诱发典型的AD病理[8];另一方面,一种罕见的APP突变A673T患者的血浆中Aβ水平降低,其AD发生风险降低[9]。虽然上述证据支持Aβ聚集在AD级联反应中的重要性,但研究也发现,与淀粉样斑块相比,新皮层神经原纤维缠结的程度与认知障碍的严重程度更相关[10]。近年来针对淀粉样蛋白的新药研发的失败,进一步证实尽管淀粉样蛋白可能是AD病理过程的关键,但其他下游事件(如神经炎症、tau等其他因素)可能是神经变性的主要驱动力。一些多因素分析显示, tau蛋白的病理改变与记忆障碍的关联性更强[10], tau-PET,而非淀粉样Aβ-PET,可以提前15年预测AD患者脑萎缩和变性的位置和程度[11],这一发现证实了tau分子可作为AD早期病理干预、延缓病程进展的靶标。

3 AD神经病理异质性及面临挑战

AD生物学定义研究框架之下体现的是脑科学研究者对该疾病病变逐渐认知的过程。AD疾病谱的建立反映了AD不再是单一疾病,而是一个疾病的连续体,涵盖了与临床症状无关但覆盖整个疾病过程的“阿尔茨海默病理改变”和AD;涉及到早发到晚发、症状前到症状期、典型和不典型等。神经分子影像学技术的进步,实现了痴呆患者神经病理的活体精准诊断,同时AD神经病理的异质性面纱也逐渐被揭开,AD临床诊断过程中那些不典型临床表现背后的真相慢慢被临床医生所认识。

3.1 AD的脑血管病理

传统观念始终是拒绝承认AD组织病理学中的血管性因素。然而,近年来越来越多研究表明血管病变贯穿于AD起病及发展的整个过程,参与神经变性病理改变。有AD药物研究中将有脑血管病表现的病人排除研究之外是有不妥之处的。梅奥诊所脑库中,约16%的AD 患者脑内可出现多种脑血管病样改变:如白质病变、关键部位脑梗死、淀粉样血管病、脑微出血、扩大的血管周围间隙、腔隙梗死等[12,13], 且发生频率随着年龄的增长而增加。有研究将AD分为典型[14]、边缘为主型、海马保留型和微小萎缩型AD四个亚型,发现白质高信号和脑微出血在边缘为主型AD中患病率最高,典型AD患者则多表现为半卵圆中心扩大的血管周围间隙,脑淀粉样血管病(cerebral amyloid angiopathy, CAA)在海马保留型AD和微小萎缩型AD患者中则更为普遍,且与较低的认知功能相关。此外,大脑的血管病变对老年人罹患AD的风险具有预测作用,在一组认知正常的受试者的5年随访研究中发现,高白质病变负担与罹患AD的风险增加相关[15]
脑血管病理对AD病理变化具有潜在影响,如脑微出血与AD脑脊液Aβ42降低和总tau蛋白含量升高有关[16,17],较高的白质高信号负担与脑内Aβ淀粉沉积水平增高有关,脑Aβ沉积程度与白质Fazekas评分正相关[18]。但目前尚不清楚脑血管病变诱发AD病理的具体机制,一种可能是血管病诱发血脑屏障破坏,进而影响Aβ在血脑屏障通路中的清除,诱发AD病理,导致认知功能减退[19];同时血脑屏障破坏导致神经毒性Aβ外渗,在脑组织中积累,产生神经毒性,加剧神经元死亡[20]。另一种可能是慢性低灌注,采用3D动脉自旋标记成像技术分别测量AD组及健康对照组脑血流量,可观察到AD组患者双侧顶枕叶皮质、海马、胼胝体压部等部位脑血流量较对照组减少[21]。慢性低灌注可引起神经元和胶质细胞氧供应不足,造成ATP生成减少、胶质细胞活化和氧化应激,引起神经元凋亡、Aβ产生增加及tau蛋白磷酸化等神经退行性变[22]。这些结果均提示血管因素在AD的病因、发病机制、认知损伤等方面起到一定作用。

3.2 路易体相关病理改变

病理证据表明,超过50%的 AD 患者脑内也可观察到α-突触核蛋白(α-synuclein)或路易体相关病理改变,且合并α-突触核蛋白异常沉积的病人比纯AD患者表现更快的认知功能减退[23]。另一方面,50~80%尸检证实的路易体痴呆(dementia with Lewy bodies, DLB)患者脑内有淀粉样斑块和tau病理学改变,还可表现出AD相关的脑脊液变化[24,25],进一步证实AD和DLB在病理生理学上存在重叠。这些研究结果提示α- 突触核蛋白参与了AD的发病机制[26],有证据表明α-突触核蛋白与 Aβ 和 tau 蛋白具有协同作用,Aβ可以直接影响α-突触核蛋白的毒性,tau蛋白和α-突触核蛋白可以直接相互作用,促进它们的共组装[27,28]
故,当从临床诊断分类转换到生物学框架时,根据“阿尔茨海默病理改变”生物学定义,就决定了可能会有部分路易体痴呆被纳入AD疾病谱范畴,所以当临床症状和病理特异性改变不完全一致的情况下,是否需要更多的生物标记物或其他信息作为进行鉴别诊断的有效补充将需要在临床工作中进一步探索和验证。

3.3 TDP-43病理

TDP-43(交互反应DNA结合蛋白)是一种主要在细胞核表达的DNA和RNA结合蛋白,参与基因转录和mRNA处理加工的调节。病理性TDP-43主要表现为异常聚集分布和异常磷酸化,是肌萎缩性侧索硬化、额颞叶痴呆的主要病理变化。多项研究证实19%~75%的 AD 也存在TDP-43蛋白的病理改变[29~30],并且与患者的临床表现及严重程度直接相关,在AD疾病进展中扮演着重要角色。AD患者的TDP-43蛋白首先出现在杏仁核,然后扩展至内嗅皮层和海马结构(边缘),随后到达新皮质和皮质下区域(弥漫)[30~32]。随着TDP-43从边缘区域扩散到大脑的其他部位,会伴有认知功能的恶化和内侧颞叶萎缩[29,30,33]。与海马保留型AD相比,TDP-43病理在典型AD和边缘为主型AD患者中更常见[34]。与对照组相比,TDP-43沉积的发生率在纯AD或AD/DLB混合病理的患者中更高[35]。在AD病变过程中,异常磷酸化的TDP-43可使淀粉样蛋白在脑内沉积加速[36]。因此,以TDP-43为靶点的关于AD的诊断和治疗可能是防治AD的新方向。

3.4 共病理现象

神经变性疾病的特征是大脑中错误折叠的蛋白质(最主要是Aβ、tau、α-突触核蛋白和TDP-43)聚集和沉积,也可被称为蛋白病。尽管不同疾病谱所具有的特征性蛋白不同,如tau是AD和其他非AD tau病理的标志,α-突触核蛋白包括PD,帕金森氏痴呆症(PDD)和DLB在内的突触核蛋白病的病理特征,而TDP-43是额颞叶痴呆的病理类型之一。但越来越多的研究证实共病理的普遍存在性。尸检证实临床诊断为AD的患者中, 仅17.3%~26.3%为单纯AD, 28.3%~41.6%患者合并路易体痴呆,13.9%~49.2%合并血管性痴呆,而12.6%患者脑内并无AD病理[3,4];相反,在临床诊断为CBD、DLB或FTD的患者中,部分表现为AD病理改变[37]。共同病理的频繁出现在很大程度上导致临床表型的不同,使得鉴别诊断具有挑战性。

4 小结

AD是一种不断蔓延的医疗危机,给家庭和社会带来巨大的经济和社会负担,目前仍缺乏有效准确的诊断工具来及早识别患者,更令人担忧的是,缺乏有效的治疗方法。在真实世界的临床工作中,“以记忆下降”为主要表现的痴呆对于界定AD病理改变缺乏敏感性和特异性,反之,即便病理确诊的AD最初可能仅仅表现为“精神行为、语言、视觉障碍”。即便是一直备受推崇的“海马萎缩”也不再是AD的特有改变。这就决定了无论是从临床诊断分类还是从生物学研究框架、微观病理的角度,研究AD疾病过程无疑都是充满希望的起点和挑战。AD神经病理的异质性最终决定AD治疗方法将是多靶点、多方位、个体化、精准化治疗,这也是今后努力的方向。

References

[1]
Collaborators G.B.D.D. Global, regional, and national burden of Alzheimer's disease and other dementias, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016[J]. Lancet Neurol. 2019; 18(1): p. 88-106.
[2]
World Alzheimer Report 2016: Improving healthcare for people with dementia. Coverage, quality and costs now and in the future[J]. 2016.
[3]
DeTure M.A. and D.W Dickson. The neuropathological diagnosis of Alzheimer's disease[J]. Mol Neurodegener. 2019; 14(1): p. 32.
[4]
Kovacs G.G., V. Kovari, and Z. Nagy. [Frequency of different forms of dementia at the Department of Neuropathology of the Hungarian National Institute of Psychiatry and Neurology during a 3-year period][J]. Ideggyogy Sz. 2008; 61(1-2): p. 24-32.
[5]
Lane C.A., J. Hardy, J.M. Schott. Alzheimer's disease[J]. Eur J Neurol. 2018; 25(1): p. 59-70.
Alzheimer's disease, the commonest cause of dementia, is a growing global health concern with huge implications for individuals and society. In this review, current understanding of the epidemiology, genetics, pathology and pathogenesis of Alzheimer's disease is outlined, before its clinical presentation and current treatment strategies are discussed. Finally, the review discusses how our enhanced understanding of Alzheimer pathogenesis, including the recognition of a protracted preclinical phase, is informing new therapeutic strategies with the aim of moving from treatment to prevention.© 2017 EAN.
[6]
Jack C.R., Jr., D.A., D.A. Bennett, K. Blennow, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease[J]. Alzheimers Dement. 2018; 14(4): p. 535-562.
[7]
Hardy J.A. and G.A Higgins. Alzheimer's disease: the amyloid cascade hypothesis[J]. Science. 1992; 256(5054): p. 184-5.
[8]
Tcw J. and A.M. Goate. Genetics of beta-Amyloid Precursor Protein in Alzheimer's Disease[J]. Cold Spring Harb Perspect Med. 2017; 7(6).
[9]
Martiskainen H., S.K. Herukka, A. Stancakova, et al. Decreased plasma beta-amyloid in the Alzheimer's disease APP A673T variant carriers[J]. Ann Neurol. 2017; 82(1): p. 128-132.
We investigated the association of Alzheimer's disease (AD)-related rare variants APP A673T and ABCA7 rs200538373-C with the levels of β-amyloid (Aβ) and parameters of metabolic and cardiovascular health in a population-based cohort of healthy middle-aged and elderly men. Carriers of protective APP A673T variant had, on average, 28% lower levels of Aβ40 and Aβ42 in plasma as compared to the controls and the carriers of ABCA7 rs200538373-C. This is the first report to show decreased Aβ levels in plasma in APP A673T carriers and thus provides evidence that lower Aβ levels throughout life may be protective against AD. Ann Neurol 2017;82:128-132.© 2017 American Neurological Association.
[10]
Nelson P.T., I. Alafuzoff, E.H. Bigio, et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature[J]. J Neuropathol Exp Neurol. 2012; 71(5): p. 362-81.
[11]
La Joie R., A.V. A.V., S.L. Baker, et al. Prospective longitudinal atrophy in Alzheimer's disease correlates with the intensity and topography of baseline tau-PET[J]. Sci Transl Med. 2020; 12(524).
[12]
Iadecola C. and R.F. Gottesman. Cerebrovascular Alterations in Alzheimer Disease[J]. Circ Res. 2018; 123(4): p. 406-408.
[13]
van Sloten T.T., A.D. Protogerou, R.M. Henry, et al. Association between arterial stiffness, cerebral small vessel disease and cognitive impairment: A systematic review and meta-analysis[J]. Neurosci Biobehav Rev. 2015; 53: p. 121-30.
[14]
Ferreira D., S., Shams L. Cavallin, et al. The contribution of small vessel disease to subtypes of Alzheimer's disease: a study on cerebrospinal fluid and imaging biomarkers[J]. Neurobiol Aging. 2018; 70: p. 18-29.
We investigated whether subtypes of Alzheimer's disease (AD), that is, typical, limbic-predominant, hippocampal-sparing, and minimal atrophy AD, had a specific signature of small vessel disease and neurodegeneration. Four hundred twenty-three clinically diagnosed AD patients were included (161 typical, 121 limbic-predominant, 70 hippocampal-sparing, 71 minimal atrophy). One hundred fifty-six fulfilled a biomarkers-based AD diagnosis. White matter hyperintensities and cerebral microbleeds (CMB) had the highest prevalence in limbic-predominant AD, and the lowest prevalence in minimal atrophy AD. CMB existed evenly in lobar and deep brain areas in limbic-predominant, typical, and hippocampal-sparing AD. In minimal atrophy AD, CMB were mainly located in brain lobar areas. Perivascular spaces in the centrum semiovale were more prevalent in typical AD. Small vessel disease contributed to the prediction of Mini-Mental State Examination. Minimal atrophy AD showed highly pathological levels of cerebrospinal fluid Aß, total tau, and phosphorylated tau, in the absence of overt brain atrophy. Cerebral amyloid angiopathy seems to have a stronger contribution to hippocampal-sparing and minimal atrophy AD, whereas hypertensive arteriopathy may have a stronger contribution to typical and limbic-predominant AD.Copyright © 2018 Elsevier Inc. All rights reserved.
[15]
Ye S., S., Dong J. Tan, et al. White-Matter Hyperintensities and Lacunar Infarcts Are Associated with an Increased Risk of Alzheimer's Disease in the Elderly in China[J]. J Clin Neurol. 2019; 15(1): p. 46-53.
[16]
Kester, M.I., J.D. Goos, C.E. Teunissen, et al. Associations between cerebral small-vessel disease and Alzheimer disease pathology as measured by cerebrospinal fluid biomarkers[J]. JAMA Neurol. 2014; 71(7): p. 855-62.
[17]
Kim H.W., J. Hong, and J.C. Jeon. Cerebral Small Vessel Disease and Alzheimer's Disease: A Review[J]. Front Neurol. 2020; 11: p. 927.
[18]
Yi, H.A., K.S. Won, H.W. Chang, et al. Association between white matter lesions and cerebral Abeta burden[J]. PLoS One. 2018; 13(9): p. e0204313.
[19]
Erickson M.A., and W.A. Banks. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer's disease[J]. J Cereb Blood Flow Metab. 2013; 33(10): p. 1500-13.
[20]
Pluta R. and M.U. Amek. Brain ischemia and ischemic blood-brain barrier as etiological factors in sporadic Alzheimer's disease[J]. Neuropsychiatr Dis Treat. 2008; 4(5): p. 855-64.
[21]
Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges[J]. Lancet Neurol. 2010; 9(7): p. 689-701.
[22]
田冰洁 and 魏文石. 阿尔茨海默病发病机制中血管因素的作用[J]. 中国临床神经科学. 2014(4): p. 445-451.
[23]
Lashley, T., J.M. Schott, P. Weston, et al. Molecular biomarkers of Alzheimer's disease: progress and prospects[J]. Dis Model Mech. 2018; 11(5).
[24]
Irwin, D.J., S.X. Xie, D. Coughlin, et al. CSF tau and beta-amyloid predict cerebral synucleinopathy in autopsied Lewy body disorders[J]. Neurology. 2018; 90(12): p. e1038-e1046.
[25]
Dai, D.L., T.F. Tropea, J.L. Robinson, et al. ADNC-RS, a clinical-genetic risk score, predicts Alzheimer's pathology in autopsy-confirmed Parkinson's disease and Dementia with Lewy bodies[J]. Acta Neuropathol. 2020; 140(4): p. 449-461.
[26]
Twohig D. and H.M. Nielsen. alpha-synuclein in the pathophysiology of Alzheimer's disease[J]. Mol Neurodegener. 2019; 14(1): p. 23.
[27]
Guo, J.L., D.J. Covell, J.P. Daniels, et al. Distinct alpha-synuclein strains differentially promote tau inclusions in neurons[J]. Cell. 2013; 154(1): p. 103-17.
[28]
Mandal, P.K., J.W. Pettegrew, E. Masliah, et al. Interaction between Abeta peptide and alpha synuclein: molecular mechanisms in overlapping pathology of Alzheimer's and Parkinson's in dementia with Lewy body disease[J]. Neurochem Res. 2006; 31(9): p. 1153-62.
[29]
James, B.D., R.S. Wilson, P.A. Boyle, et al. TDP-43 stage, mixed pathologies, and clinical Alzheimer's-type dementia[J]. Brain. 2016; 139(11): p. 2983-2993.
[30]
Josephs, K.A., M.E. Murray, J.L. Whitwell, et al. Staging TDP-43 pathology in Alzheimer's disease[J]. Acta Neuropathol. 2014; 127(3): p. 441-50.
TDP-43 immunoreactivity occurs in 19-57 % of Alzheimer's disease (AD) cases. Two patterns of TDP-43 deposition in AD have been described involving hippocampus (limbic) or hippocampus and neocortex (diffuse), although focal amygdala involvement has been observed. In 195 AD cases with TDP-43, we investigated regional TDP-43 immunoreactivity with the aim of developing a TDP-43 in AD staging scheme. TDP-43 immunoreactivity was assessed in amygdala, entorhinal cortex, subiculum, hippocampal dentate gyrus, occipitotemporal, inferior temporal and frontal cortices, and basal ganglia. Clinical, neuroimaging, genetic and pathological characteristics were assessed across stages. Five stages were identified: stage I showed scant-sparse TDP-43 in the amygdala only (17 %); stage II showed moderate-frequent amygdala TDP-43 with spread into entorhinal and subiculum (25 %); stage III showed further spread into dentate gyrus and occipitotemporal cortex (31 %); stage IV showed further spread into inferior temporal cortex (20 %); and stage V showed involvement of frontal cortex and basal ganglia (7 %). Cognition and medial temporal volumes differed across all stages and progression across stages correlated with worsening cognition and medial temporal volume loss. Compared to 147 AD patients without TDP-43, only the Boston Naming Test showed abnormalities in stage I. The findings demonstrate that TDP-43 deposition in AD progresses in a stereotypic manner that can be divided into five distinct topographic stages which are supported by correlations with clinical and neuroimaging features. Given these findings, we recommend sequential regional TDP-43 screening in AD beginning with the amygdala.
[31]
Nelson, P.T., J.Q. Trojanowski, E.L. Abner, et al. "New Old Pathologies": AD, PART, and Cerebral Age-Related TDP-43 With Sclerosis (CARTS)[J]. J Neuropathol Exp Neurol. 2016; 75(6): p. 482-98.
[32]
Katsumata, Y., E.L. Abner, S. Karanth, et al. Distinct clinicopathologic clusters of persons with TDP-43 proteinopathy[J]. Acta Neuropathol. 2020; 140(5): p. 659-674.
[33]
Josephs, K.A., J.L. Whitwell, S.D. Weigand, et al. TDP-43 is a key player in the clinical features associated with Alzheimer's disease[J]. Acta Neuropathol. 2014; 127(6): p. 811-24.
The aim of this study was to determine whether the TAR DNA-binding protein of 43 kDa (TDP-43) has any independent effect on the clinical and neuroimaging features typically ascribed to Alzheimer's disease (AD) pathology, and whether TDP-43 pathology could help shed light on the phenomenon of resilient cognition in AD. Three-hundred and forty-two subjects pathologically diagnosed with AD were screened for the presence, burden and distribution of TDP-43. All had been classified as cognitively impaired or normal, prior to death. Atlas-based parcellation and voxel-based morphometry were used to assess regional atrophy on MRI. Regression models controlling for age at death, apolipoprotein ε4 and other AD-related pathologies were utilized to explore associations between TDP-43 and cognition or brain atrophy, stratified by Braak stage. In addition, we determined whether the effects of TDP-43 were mediated by hippocampal sclerosis. One-hundred and ninety-five (57%) cases were TDP-positive. After accounting for age, apolipoprotein ε4 and other pathologies, TDP-43 had a strong effect on cognition, memory loss and medial temporal atrophy in AD. These effects were not mediated by hippocampal sclerosis. TDP-positive subjects were 10× more likely to be cognitively impaired at death compared to TDP-negative subjects. Greater cognitive impairment and medial temporal atrophy were associated with greater TDP-43 burden and more extensive TDP-43 distribution. TDP-43 is an important factor in the manifestation of the clinico-imaging features of AD. TDP-43 also appears to be able to overpower what has been termed resilient brain aging. TDP-43 therefore should be considered a potential therapeutic target for the treatment of AD.
[34]
Josephs, K.A., J.L. Whitwell, N. Tosakulwong, et al. TAR DNA-binding protein 43 and pathological subtype of Alzheimer's disease impact clinical features[J]. Ann Neurol. 2015; 78(5): p. 697-709.
The aim of this study was to determine whether the frequency of TAR DNA-binding protein 43 (TDP-43) deposition in Alzheimer's disease (AD) differs across pathologically defined AD subtypes (hippocampal sparing [HpSp]; typical and limbic) and further examine the relationship between TDP-43, pathological subtype, and clinical features in AD.We identified all cases with pathologically confirmed AD (NIA-Reagan intermediate-high probability, Braak stage IV-VI) independent of cognitive status (n = 188). Neurofibrillary tangle counts were performed using thioflavin-S microscopy in hippocampus and three neocortical regions, and all cases were subtyped: HpSp AD pathology (n = 19); typical AD pathology (n = 136); and limbic AD pathology (n = 33). TDP-43 immunoreactivity was performed in multiple brain regions to assess for the presence of TDP-43 and TDP-43 stage. All cases were clinically subclassified at presentation as amnestic AD dementia versus atypical AD dementia. Statistical analysis was performed using linear and penalized logistic regression to assess associations with pathological subtype, and the effects of TDP-43, accounting for possible interactions between pathological subtype and TDP-43.TDP-43 deposition was frequent in typical (59%) and limbic AD pathologies (67%), but not HpSp AD pathology (21%; p = 0.003). The observed associations of TDP-43 with greater memory loss, naming and functional decline, and smaller hippocampal volumes, closest to death, did not differ across AD pathological subtype. Clinical presentation was associated with pathological subtype (p = 0.01), but not TDP-43 (p = 0.69).Although the frequency of TDP-43 deposition in AD varies by pathological subtype, the observed effects of TDP-43 on clinical/magnetic resonance imaging features are consistent across pathological subtypes. Clinical presentation in AD is driven by pathological subtype, not by TDP-43.© 2015 American Neurological Association.
[35]
McAleese, K.E., L. Walker, D. Erskine, et al. TDP-43 pathology in Alzheimer's disease, dementia with Lewy bodies and ageing[J]. Brain Pathol. 2017; 27(4): p. 472-479.
[36]
Davis, S.A., K.A. Gan, J.A. Dowell, et al. TDP-43 expression influences amyloidbeta plaque deposition and tau aggregation[J]. Neurobiol Dis. 2017; 103: p. 154-162.
[37]
Ling, H., S.S. O'Sullivan, J.L. Holton, et al. Does corticobasal degeneration exist? A clinicopathological re-evaluation[J]. Brain. 2010; 133(Pt 7): p. 2045-57.
PDF(800 KB)

733

Accesses

0

Citation

Detail

Sections
Recommended

/