Correlation between Alzheimer's disease and common chronic diseases

JIANG Yaling, WEN Yafei, LIU Xixi, ZHOU Hui, TANG Beisha, WENG Ling

PDF(819 KB)
  • ISSN 2096-5516 CN 10-1536/R
  • Sponsored: China Association for Alzheimer’s Disease
快速检索
Chinese Journal of Alzheimer's Disease and Related Disorders ›› 2019, Vol. 2 ›› Issue (2) : 315-321. DOI: 10.3969/j.issn.2096-5516.2019.02.002

Correlation between Alzheimer's disease and common chronic diseases

Author information +
History +

Abstract

Objective: To explore the relationship of hypertension, diabetes mellitus and serum lipid levels between AD patients and normal controls. Method: This study included 513 AD patients and 322 normal controls screened by MMSE. Data of hypertension, diabetes, cholesterol, triglyceride, high density lipoprotein and low density lipoprotein were collected. Data of hypertension and diabetes between AD group and control group were analyzed by chi-square test, and serum lipid data was analyzed by t test. Results: The prevalence of hypertension in AD patients was significantly lower than in normal controls, and the difference was statistically significant (P< 0.05); the prevalence of diabetes in AD patients was not significantly correlated with normal controls; the levels of cholesterol, triglycerides and low-density lipoprotein in AD patients were lower than those in normal controls, while high-density lipoprotein levels were higher than that in normal controls, and the differences were statistically significant (P< 0.05). Conclusion: In this study, we found that there are some differences of hypertension and dyslipidemia and no difference of diabetes between AD patients and normal controls. However, based on current results, we are unable to determine whether there is a correlation between AD and hypertension, diabetes and dyslipidemia. Larger sample size and longitudinal researches are needed to determine the relationship.

Key words

Alzheimer's disease / Chronic disease / Hypertension / Diabetes mellitus / Dyslipidemia / Comorbidity

Cite this article

Download Citations
JIANG Yaling , WEN Yafei , LIU Xixi , ZHOU Hui , TANG Beisha , WENG Ling. Correlation between Alzheimer's disease and common chronic diseases. Chinese Journal of Alzheimer's Disease and Related Disorders. 2019, 2(2): 315-321 https://doi.org/10.3969/j.issn.2096-5516.2019.02.002
阿尔茨海默病(Alzheimer's disease, AD)是一种起病隐匿、逐渐进展的神经系统退行性疾病,是老年人中最常见的痴呆形式,主要表现为记忆和认知功能的进行性减退。流行病学数据显示2018年全世界AD患者有5千万,预计到2050年会增加至1.52亿[1]。AD主要的致病机制包括淀粉样蛋白(amyloid-β,Aβ)沉积、tau蛋白过度磷酸化以及神经纤维缠结(neurofibrillarytangles, NFT)等[2]。糖尿病、高血压和高脂血症等常见慢性病为AD的危险因素,常与AD共同存在。本文通过对AD患者和正常人之间高血压、糖尿病患病率以及血脂水平的比较来探讨它们之间的相关性。

1 研究方法

选取2010年1月到2018年12月在湘雅医院神经内科门诊及病房收集的513例AD患者和322例认知正常对照(见表1)。所有受试者均知情同意并已签署知情同意书。其中,AD的诊断标准为2011年NINCDS-ADRDA。所有患者均在入组时记录患者是否患有高血压和糖尿病,其中147例AD患者采集了血脂[总胆固醇(total cholesterol, TC)、甘油三酯(triglyceride, TG)、高密度脂蛋白(high density lipoprotein, HDL)和低密度脂蛋白(low density lipoprotein, LDL)]的结果。对认知正常对照均进行MMSE评分,其中初中文化程度及以上MMSE≥27、小学文化程度MMSE≥23、文盲MMSE≥19定为认知功能正常[3]。采用卡方检验对AD组和正常对照组分性别和年龄进行高血压、糖尿病数据的统计分析;采用t检验对AD血脂组和正常对照组分性别和年龄进行血脂数据的统计分析,P< 0.05为差异有统计学意义。
表1 AD组(513例)、AD血脂组(147例) 和对照组(322例)基本信息表
项目 AD组(例) AD血脂组(例) 对照组(例)
性别 189 52 165
324 95 157
年龄段 中年(40~64岁) 195 66 104
老年(65~84岁) 281 75 208
高龄老人(≥85岁) 37 6 10

2 结果

2.1 AD与高血压的相关性

从总体上看,AD患者高血压的患病率为29.0%,正常人高血压的患病率为39.4%,AD患者低于正常人,差异有统计学意义(P=0.002)(见表2)。
表2 不同性别AD组和对照组患高血压情况比较
性别 高血压 有(例) 无(例) 总计(例) 卡方值 P
男性 AD组 51 138 189 9.335 0.002*
对照组 70 95 165
总计 121 233 354
女性 AD组 98 226 324 1.778 0.182
对照组 57 100 157
总计 155 326 481
总体 AD组 149 364 513 9.662 0.002*
对照组 127 195 322
总计 276 559 835
注:*示P值< 0.05。
不同性别AD患者和正常人患高血压的情况如表2所示,结果显示男性AD患者的高血压患病率低于正常男性,差异有统计学意义(P=0.002);而女性AD患者的高血压患病率与正常女性相比差异无统计学意义(P=0.182)。
不同年龄段AD患者和正常人患高血压的情况如表3所示,结果显示中年(40~64岁)和老年(65~84岁)AD患者的高血压患病率低于正常中年和老年人,差异有统计学意义(P=0.026; P=0.047);而高龄(≥85岁)AD患者的高血压患病率与正常高龄老人相比差异无统计学意义(P=1.000)。
表3 不同年龄段AD组和对照组患高血压情况比较
年龄段 高血压 有(例) 无(例) 总计(例) 卡方值 P
中年 AD组 33 162 195 4.958 0.026*
对照组 29 75 104
总计 62 237 299
老年 AD组 102 179 281 3.936 0.047*
对照组 94 114 208
总计 196 293 489
高龄
老人
AD组 14 23 37 0.000 1.000
对照组 4 6 10
总计 18 29 47
注:*示P值< 0.05。

2.2 AD与糖尿病的相关性

从总体上看,AD患者糖尿病的患病率为9.36%,正常人糖尿病的患病率为14.91%,AD患者低于正常人,差异有统计学意义(P=0.014)(见表4)。
表4 不同性别AD组和对照组患糖尿病情况比较
性别 组别 糖尿病 卡方值 P
有(例) 无(例) 总计(例)
男性 AD组 17 172 189 3.776 0.072
对照组 26 139 165
总计 43 311 354
女性 AD组 31 293 324 2.131 0.144
对照组 22 135 157
总计 53 428 481
总体 AD组 48 465 513 5.989 0.014*
对照组 48 274 322
总计 96 739 835
注:*示P值< 0.05。
不同性别AD患者和正常人患糖尿病的情况如表4所示,结果显示男性和女性AD患者的糖尿病患病率与正常男性、女性相比差异无统计学意义(P=0.072; P=0.144)。
不同年龄段AD患者和正常人患糖尿病的情况如表5所示,结果显示老年(65~84岁)AD患者的糖尿病患病率低于正常老年人,差异有统计学意义(P=0.031);而中年(40~64岁)和高龄(≥85岁)AD患者的糖尿病患病率与正常高龄老人相比差异无统计学意义(P=0.706; P=0.811)。
表5 不同年龄段AD组和对照组患糖尿病情况比较
年龄段 组别 糖尿病 卡方值 P
有(例) 无(例) 总计(例)
中年 AD组 11 184 195 0.142 0.706
对照组 7 97 104
总计 18 281 299
老年 AD组 33 248 281 4.673 0.031*
对照组 39 169 208
总计 72 417 489
高龄
AD组 4 33 37 0.057 0.811
对照组 2 8 10
总计 6 41 47
注:*示P值< 0.05。

2.3 AD与血脂异常的相关性

从总体上看,AD患者的TC、TG和LDL水平均低于正常人,差异有统计学意义(P=0.011; P=0.001; P=0.009)(见表6图1A)。
表6 不同性别AD血脂组与对照组的TC、TG、HDL和LDL水平比较(±s, mmol/L)
性别 组别 人数(例) TC TG HDL LDL
男性 AD血脂组 52 4.78±1.20 1.24±0.69 1.39±0.47 2.85±0.93
对照组 165 5.12±0.94 1.71±1.33 1.28±0.30 3.13±0.74
P 0.037* 0.016* 0.046* 0.027*
女性 AD血脂组 95 5.25±1.17 1.44±0.72 1.49±0.34 3.15±0.91
对照组 157 5.62±1.10 1.73±1.06 1.48±0.36 3.41±0.87
P 0.012* 0.020* 0.714 0.024*
总体 AD血脂组 147 5.08±1.20 1.37±0.72 1.46±0.40 3.04±0.92
对照组 322 5.37±1.05 1.72±1.20 1.38±0.34 3.27±0.82
P - 0.011* 0.001* 0.024* 0.009*
注:*示P值< 0.05。
图1 AD血脂组与对照组的TC、TG、HDL和LDL水平比较
(A:总体;B:男性;C:女性;D中年;E老年;F高龄老人)

Full size|PPT slide

不同性别AD患者与正常人的TC、TG、HDL和LDL水平比较情况(见表6图1B图1C),结果显示男性AD患者TC、TG、LDL水平均低于正常男性,差异有统计学意义(P=0.037; P=0.016; P=0.027);男性AD患者HDL水平高于正常男性,差异有统计学意义(P=0.046)。女性AD患者同样地TC、TG、LDL水平均低于正常女性,差异有统计学意义(P=0.012; P=0.020; P=0.024),而女性AD患者HDL水平与正常女性相比差异无统计学意义(P=0.714)。
不同年龄段AD患者与正常人的TC、TG、HDL和LDL水平比较情况(见表7图1D图1E图1F),结果显示中年AD患者TG水平低于中年正常人,差异有统计学意义(P=0.002),TC、HDL、LDL水平差异无统计学意义;老年AD患者TG水平低于老年正常人,HDL水平高于老年正常人,差异有统计学意义(P=0.035; P=0.003),TC、LDL水平差异无统计学意义;高龄AD患者TC、LDL水平低于高龄正常人,差异有统计学意义(P=0.001; P=0.005),TG、HDL水平差异无统计学意义(P=0.969; P=0.125)。
表7 不同年龄段AD血脂组与对照组的TC、TG、HDL和LDL水平比较(±s, mmol/L)
年龄段 组别 人数(例) TC TG HDL LDL
中年 AD血脂组 66 5.13±1.17 1.36±0.73 1.42±0.31 3.10±0.89
对照组 104 5.46±1.07 1.74±0.81 1.40±0.33 3.36±0.84
P - 0.059 0.002* 0.653 0.053
老年 AD血脂组 75 5.15±1.19 1.37±0.66 1.52±0.45 3.06±0.95
对照组 208 5.31±1.05 1.72±1.38 1.37±0.35 3.21±0.81
P - 0.281 0.035* 0.003* 0.181
高龄老人 AD血脂组 6 3.77±1.01 1.55±1.22 1.06±0.30 2.30±0.70
对照组 10 5.50±0.72 1.53±0.61 1.30±0.29 3.47±0.70
P - 0.001* 0.969 0.125 0.005*
注:*示P值< 0.05。

3 讨论

正常人高血压、糖尿病患病率与其他研究类似:一项应用多阶段、分层抽样方法的研究抽取中国总人口中年龄≥18岁成人的50 171个代表性样品完成调查,校正后的高血压发病率为29.6%(95%CI: 28.9%~30.4%),且男性高于女性[4]。世界卫生组织发布的2014年全球糖尿病(年龄标化)患病率为8.5%[5]。另一项对6 048名60岁以上社区老龄人的研究发现高血压、糖尿病的发病率分别为56.13%、19.97%,男女有差别且有统计学差异[6]。因为本研究的研究对象平均年龄为69岁,故正常对照的高血压患病率39.4%和糖尿病患病率14.91%比平常的高,这应该是合理的。
许多流行病学研究认为AD与高血压之间存在相关性,但目前还存在争议。一些项目研究了老年血压与认知之间的横断面关联,表明高血压患者认知功能较差[7-8]。然而,也有研究报告的结果相反,即老年高血压有更好的认知能力[9-10]。本研究结果偏向AD患者高血压的患病率低于正常对照。选择偏倚和反向因果关系可以解释老年AD患者与高血压之间的反向关联。AD的病理过程可能会影响血压调节,导致疾病发展和进展期间血压下降。脑血流量在很宽的平均动脉压范围内保持相对恒定,是脑循环的一种称为自动调节的特性[11]。自主神经系统是调节和维持血压的重要机构。AD患者可有自主神经功能紊乱,Vasalva机动的血压反应受损明显,而自主神经功能失调可能造成低血压的产生和脑血流量的减少[12-13]。在淀粉样蛋白前体蛋白(amyloid precursor protein, APP)或早老素(presenilin, PSEN)基因突变的AD小鼠模型中,存在脑血流的调节受损,低血压或高血压的发作导致脑血流量的不良波动,造成神经元功能障碍,加速AD的进程[14]
目前对于AD与糖尿病的相关性,大多研究认为糖尿病患者容易发生AD[15-17],原因是它们有共同的病理特征,即淀粉样蛋白沉积,2型糖尿病患者的高胰岛素血症可能在老年斑的形成中起重要作用[18],从而认为淀粉样蛋白是AD和2型糖尿病之间相关机制的纽带。此外,学者认为胰岛素及其受体在AD与糖尿病之间起到中间介导作用。在中枢神经系统中,胰岛素具有调节学习和记忆过程、神经调节和神经营养等作用[19-20]。糖尿病患者长期外周高胰岛素血症可下调血脑屏障的胰岛素受体并减少胰岛素转运到大脑,从而增加AD发生的风险[20-22]。但是,也有研究表示糖尿病与AD之间并无相关性[23-24]。本研究结果也提示AD与糖尿病之间无显著相关性。虽然本研究的研究对象较多,但其中糖尿病患者数量较少,糖尿病患者数量过少可能是导致目前结果的主要原因。
血脂与认知障碍的关系仍存在分歧。一些研究表明血脂异常可以增加AD的风险[25-26]。其机制可能为通过脂质调节产生多种不同的寡聚物亚型,使Aβ聚集增加[27-28],从而加速了AD的发生和发展。然而也有研究发现血脂水平与AD或认知障碍没有明显相关性[29-31]。本研究结果发现AD患者与正常对照相比具有更低水平的TC、TG、LDL和更高水平的HDL,与Presecki等[32]、Lepara等[33]的结果相似。Preseck等[32]的研究包括50例AD患者和58例认知正常的对照(MMSE> 27),结果显示AD患者的脂质水平明显低于对照组;晚期AD患者的整体血脂水平显著低于对照组,且与中期AD患者相比其TG和LDL水平显著降低。Lepara等[33]的研究包括30例AD患者和30例年龄、性别匹配的对照,结果显示与对照相比,AD患者血清TG、TC、LDL和VLDL水平显著较低。与前文提到的高血压相似,选择偏倚和反向因果关系可以解释AD与血脂异常之间的反向关联。此外,各研究结果差别较大可能也与其他因素有关,如性别、年龄、种族、饮食、运动及抽烟、饮酒等[32]

4 结论

本研究发现AD患者高血压和血脂异常与正常对照之间存在差异,而糖尿病无明显差异。但根据目前的结果,尚不能明确AD与高血压、糖尿病和血脂异常之间是否存在共病关系。因为本研究是横断面研究,结果体现的可能只是统计学上的差异,需要更大的样本量及纵向研究以明确其相关性。

References

[1]
International Alzheimer’s Disease. World Alzheimer Report 2018[R]. 2019.
[2]
Querfurth, HW, Laferla, FM. Alzheimer’s disease[J]. N Engl J Med, 2010, 362(4): 329-344.
[3]
张振馨, 洪霞, 李辉, 等. 北京城乡55岁或以上居民简易智能状态检查测试结果的分布特征[J]. 中华神经科杂志, 1999(3): 20-24.
[4]
Wang J, Zhang L, Wang F, et al. Prevalence, awareness, treatment, and control of hypertension in China: results from a national survey[J]. Am J Hypertens, 2014, 27(11): 1355-1361.
[5]
世界卫生组织. 全球糖尿病报告[R].
[6]
周建红, 陈建强. 6048名社区老年人体检情况分析[J]. 检验医学与临床, 2017, 14(3): 415-417.
[7]
Kuo HK, Sorond F, Iloputaife I, et al. Effect of blood pressure on cognitive functions in elderly persons[J]. J Gerontol A Biol Sci Med Sci, 2004, 59(11): 1191-1194.
[8]
Obisesan TO, Obisesan OA, Martins S, et al. High blood pressure, hypertension, and high pulse pressure are associated with poorer cognitive function in persons aged 60 and older: the Third National Health and Nutrition Examination Survey[J]. J Am Geriatr Soc, 2008, 56(3): 501-509.
To test the hypothesis that hypertension, high blood pressure, and high pulse pressure (PP) are independently associated with lower cognitive function.Cross-sectional study of persons examined in 1988 to 1994.U.S. noninstitutionalized population.Six thousand one hundred sixty-three men and women aged 60 and older who participated in the Third National Health and Nutrition Examination Survey (NHANES III).Measurements included blood pressure, short-portable Mini-Mental State Examination (sp-MMSE), self-reported history of hypertension, diagnosis, and treatment.In the initial bivariate analysis within age groups of 60 to 64, 65 to 69, and 70 to 74, optimal blood pressure (< 120/80 mmHg) was associated with best cognitive performance; the severe hypertension group had the poorest performance in all age groups except the very old (> or = 80), where the pattern was reversed, showing poorest performance in the optimal blood pressure group and best in the group with moderate hypertension. This pattern changed slightly in multiple regression analyses modeling sp-MMSE as the outcome variable. Higher stage of hypertension according to the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure and higher PP were associated with worse cognitive performance than normal blood pressure at ages 70 to 79 and 80 and older. No significant negative association was seen in subjects aged 60 to 69. Subjects with treated but uncontrolled hypertension had significantly lower sp-MMSE scores than those without hypertension or with controlled hypertension after controlling for age, sex, ethnicity, income, and PP.At age 70 and older, high blood pressure, hypertension, and uncontrolled blood pressure are associated with poorer cognitive function than normal blood pressure. Optimal control of blood pressure may be useful in preserving neurocognitive loss as the population ages.
[9]
Launer LJ, Masaki K, Petrovitch H, et al. The association between midlife blood pressure levels and late-life cognitive function. The Honolulu-Asia Aging Study[J]. JAMA, 1995, 274(23): 1846-1851.
[10]
Power MC, Weuve J, Gagne JJ, et al. The association between blood pressure and incident Alzheimer disease: a systematic review and meta-analysis[J]. Epidemiol, 2011, 22(5): 646-659.
[11]
van Beek AH, Claassen JA, Rikkert MG, et al. Cerebral autoregulation: an overview of current concepts and methodology with special focus on the elderly[J]. J Cereb Blood Flow Metab, 2008, 28(6): 1071-1085.
[12]
Femminella GD, Rengo G, Komici K, et al. Autonomic dysfunction in Alzheimer’s disease: tools for assessment and review of the literature[J]. J Alzheimers Dis, 2014, 42(2): 369-377.
Autonomic dysfunction is very common in patients with dementia, and its presence might also help in differential diagnosis among dementia subtypes. Various central nervous system structures affected in Alzheimer's disease are also implicated in autonomic nervous system regulation, and it has been hypothesized that the deficit in central cholinergic function observed in Alzheimer's disease could likely lead to autonomic dysfunction. Several feasible tests can be used in clinical practice for the assessment of parasympathetic and sympathetic functions, especially in terms of cardiovascular autonomic modulation. In this review, we describe the different tests available and the evidence from the literature which indicate a definite presence of autonomic dysfunction in dementia at various degrees. Importantly, the recognition of dysautonomia, besides possibly being an early marker of dementia, would help prevent the disabling complications which increase the risk of morbidity, institutionalization, and mortality in these individuals.
[13]
Jensen-Dahm C, Waldemar G, Staehelin JT, et al. Autonomic Dysfunction in Patients with Mild to Moderate Alzheimer’s Disease[J]. J Alzheimers Dis, 2015, 47(3): 681-689.
Autonomic function has received little attention in Alzheimer's disease (AD). AD pathology has an impact on brain regions which are important for central autonomic control, but it is unclear if AD is associated with disturbance of autonomic function.To investigate autonomic function using standardized techniques in patients with AD and healthy age-matched controls.Thirty-three patients with mild to moderate AD and 30 age- and gender-matched healthy controls, without symptoms of autonomic dysfunction, underwent standardized autonomic testing with deep breathing, Valsalva maneuver, head-up tilt, and isometric handgrip test. Brachial pressure curve and electrocardiogram were recorded for off-line analysis of blood pressure and beat-to-beat heart rate (HR).AD patients had impaired blood pressure responses to Vasalva maneuver (p < 0.0001) and HR response to isometric contraction (p = 0.0001). A modified composite autonomic scoring scale showed greater degree of autonomic impairment in patients compared to controls (patient: 2.1 ± 1.6; controls: 0.9 ± 1.1, p = 0.001). HR response to deep breathing and Valsalva ratio were similar in the two groups.We identified autonomic impairment ranging from mild to severe in patients with mild to moderate AD, who did not report autonomic symptoms. Autonomic impairment was mainly related to impairment of sympathetic function and evident by impaired blood pressure response to the Vasalva maneuver. The clinical implications of this finding are that AD may be associated with autonomic disturbances, but patients with AD may rarely report symptoms of autonomic dysfunction. Future research should systematically evaluate symptoms of autonomic function and characterize risk factors associated with autonomic dysfunction.
[14]
Niwa, K, Kazama K, Younkin L, et al. Cerebrovascular autoregulation is profoundly impaired in mice overexpressing amyloid precursor protein[J]. Am J Physiol Heart Circ Physiol, 2002, 283(1): H315-H323.
[15]
Janson J, Laedtke T, Parisi JE, et al. Increased risk of type 2 diabetes in Alzheimer disease[J]. Diabetes, 2004, 53(2): 474-481.
[16]
Irie F, Fitzpatrick AL, Lopez OL, et al. Enhanced risk for Alzheimer disease in persons with type 2 diabetes and APOE epsilon4: the Cardiovascular Health Study Cognition Study[J]. Arch Neurol, 2008, 65(1): 89-93.
[17]
Dominguez RO, Pagano MA, Marschoff ER, et al. Alzheimer disease and cognitive impairment associated with diabetes mellitus type 2: associations and a hypothesis[J]. Neurol, 2014, 29(9): 567-572.
[18]
de la Monte SM, Wands JR, Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer's disease[J]. J Alzheimers Dis, 2005, 7(1): 45-61.
[19]
Ghasemi R, Haeri A, Dargahi L, et al. Insulin in the brain: sources, localization and functions[J]. Mol Neurobiol, 2013, 47(1): 145-171.
Historically, insulin is best known for its role in peripheral glucose homeostasis, and insulin signaling in the brain has received less attention. Insulin-independent brain glucose uptake has been the main reason for considering the brain as an insulin-insensitive organ. However, recent findings showing a high concentration of insulin in brain extracts, and expression of insulin receptors (IRs) in central nervous system tissues have gathered considerable attention over the sources, localization, and functions of insulin in the brain. This review summarizes the current status of knowledge of the peripheral and central sources of insulin in the brain, site-specific expression of IRs, and also neurophysiological functions of insulin including the regulation of food intake, weight control, reproduction, and cognition and memory formation. This review also considers the neuromodulatory and neurotrophic effects of insulin, resulting in proliferation, differentiation, and neurite outgrowth, introducing insulin as an attractive tool for neuroprotection against apoptosis, oxidative stress, beta amyloid toxicity, and brain ischemia.
[20]
Ghasemi R, Dargahi L, Haeri A, et al. Brain insulin dysregulation: implication for neurological and neuropsychiatric disorders[J]. Mol Neurobiol, 2013, 47(3): 1045-1065.
Arduous efforts have been made in the last three decades to elucidate the role of insulin in the brain. A growing number of evidences show that insulin is involved in several physiological function of the brain such as food intake and weight control, reproduction, learning and memory, neuromodulation and neuroprotection. In addition, it is now clear that insulin and insulin disturbances particularly diabetes mellitus may contribute or in some cases play the main role in development and progression of neurodegenerative and neuropsychiatric disorders. Focusing on the molecular mechanisms, this review summarizes the recent findings on the involvement of insulin dysfunction in neurological disorders like Alzheimer's disease, Parkinson's disease and Huntington's disease and also mental disorders like depression and psychosis sharing features of neuroinflammation and neurodegeneration.
[21]
Ronnemaa E, Zethelius B, Sundelof J, et al. Impaired insulin secretion increases the risk of Alzheimer disease[J]. Neurol, 2008, 71(14): 1065-1071.
[22]
Arnold SE, Arvanitakis Z, Macauley-Rambach SL, et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums[J]. Nat Rev Neurol, 2018, 14(3): 168-181.
[23]
Akomolafe A, Beiser A, Meigs JB, et al. Diabetes mellitus and risk of developing Alzheimer disease: results from the Framingham Study[J]. Arch Neurol, 2006, 63(11): 1551-1555.
[24]
Kopf D Frolich L. Risk of incident Alzheimer’s disease in diabetic patients: a systematic review of prospective trials[J]. J Alzheimers Dis, 2009, 16(4): 677-685.
[25]
Desikan RS, Schork AJ Wang Y, et al. Polygenic overlap between C-reactive protein, plasma lipids, and Alzheimer disease[J]. Circula, 2015, 131(23): 2061-2069.
[26]
Wood WG, Li L Muller WE, et al. Cholesterol as a causative factor in Alzheimer's disease: a debatable hypothesis[J]. J Neurochem, 2014, 129(4): 559-572.
[27]
Rangachari V,, Dean DN Rana P, et al. Cause and consequence of Abeta-lipid interactions in Alzheimer disease pathogenesis[J]. Biochim Biophys Acta Biomembr, 2018.
[28]
Arbor SC, Lafontaine M, Cumbay M, et al. Amyloid-beta Alzheimer targets-protein processing, lipid rafts, and amyloid-beta pores[J]. Yale J Biol Med, 2016, 89(1): 5-21.
Amyloid beta (Aβ), the hallmark of Alzheimer's Disease (AD), now appears to be deleterious in its low number aggregate form as opposed to the macroscopic Aβ fibers historically seen postmortem. While Alzheimer targets, such as the tau protein, amyloid precursor protein (APP) processing, and immune system activation continue to be investigated, the recent discovery that amyloid beta aggregates at lipid rafts and likely forms neurotoxic pores has led to a new paradigm regarding why past therapeutics may have failed and how to design the next round of compounds for clinical trials. An atomic resolution understanding of Aβ aggregates, which appear to exist in multiple conformations, is most desirable for future therapeutic development. The investigative difficulties, structures of these small Aβ aggregates, and current therapeutics are summarized in this review.
[29]
Marcum ZA, Walker R, Bobb JF, et al. Serum cholesterol and incident Alzheimer's disease: findings from the adult changes in thought study[J]. J Am Geriatr Soc, 2018, 66(12): 2344-2352.
[30]
Proitsi P, Lupton MK, Velayudhan L, et al. Genetic predisposition to increased blood cholesterol and triglyceride lipid levels and risk of Alzheimer disease: a Mendelian randomization analysis[J]. PLoS Med, 2014, 11(9): e1001713.
[31]
Warren MW, Hynan LS, Weiner MF, et al. Lipids and adipokines as risk factors for Alzheimer's disease[J]. J Alzheimers Dis, 2012, 29(1): 151-157.
[32]
Presecki P, Muck-Seler D, Mimica N, et al. Serum lipid levels in patients with Alzheimer's disease[J]. Coll Antropol, 2011, 35(Suppl 1): 115-120.
[33]
Lepara O, Valjevac A, Alajbegovic A, et al. Decreased serum lipids in patients with probable Alzheimer’s disease[J]. Bosn J Basic Med Sci, 2009, 9(3): 215-220.
PDF(819 KB)

286

Accesses

0

Citation

Detail

Sections
Recommended

/